Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Immunol ; 14: 1085456, 2023.
Article in English | MEDLINE | ID: covidwho-2327391

ABSTRACT

This study aimed to clarify the effects of two processed forms of American ginseng (Panax quinquefolius L.) on immunosuppression caused by cyclophosphamide (CTX) in mice. In the CTX-induced immunosuppressive model, mice were given either steamed American ginseng (American ginseng red, AGR) or raw American ginseng (American ginseng soft branch, AGS) by intragastric administration. Serum and spleen tissues were collected, and the pathological changes in mice spleens were observed by conventional HE staining. The expression levels of cytokines were detected by ELISA, and the apoptosis of splenic cells was determined by western blotting. The results showed that AGR and AGS could relieve CTX-induced immunosuppression through the enhanced immune organ index, improved cell-mediated immune response, increased serum levels of cytokines (TNF-α, IFN-γ, and IL-2) and immunoglobulins (IgG, IgA, and IgM), as well as macrophage activities including carbon clearance and phagocytic index. AGR and AGS downregulated the expression of BAX and elevated the expression of Bcl-2, p-P38, p-JNK, and p-ERK in the spleens of CTX-injected animals. Compared to AGS, AGR significantly improved the number of CD4+CD8-T lymphocytes, the spleen index, and serum levels of IgA, IgG, TNF-α, and IFN-γ. The expression of the ERK/MAPK pathway was markedly increased. These findings support the hypothesis that AGR and AGS are effective immunomodulatory agents capable of preventing immune system hypofunction. Future research may investigate the exact mechanism to rule out any unforeseen effects of AGR and AGS.


Subject(s)
Panax , Tumor Necrosis Factor-alpha , Mice , Animals , Tumor Necrosis Factor-alpha/pharmacology , Cyclophosphamide/adverse effects , Immunosuppression Therapy , Cytokines/metabolism , Macrophages , Immunoglobulin G/pharmacology , Signal Transduction , Immunoglobulin A/pharmacology
2.
Viruses ; 14(2)2022 02 14.
Article in English | MEDLINE | ID: covidwho-1687056

ABSTRACT

Omicron was designated by the WHO as a VOC on 26 November 2021, only 4 days after its sequence was first submitted. However, the impact of Omicron on current antibodies and vaccines remains unknown and evaluations are still a few weeks away. We analysed the mutations in the Omicron variant against epitopes. In our database, 132 epitopes of the 120 antibodies are classified into five groups, namely NTD, RBD-1, RBD-2, RBD-3, and RBD-4. The Omicron mutations impact all epitopes in NTD, RBD-1, RBD-2, and RBD-3, with no antibody epitopes spared by these mutations. Only four out of 120 antibodies may confer full resistance to mutations in the Omicron spike, since all antibodies in these three groups contain one or more epitopes that are affected by these mutations. Of all antibodies under EUA, the neutralisation potential of Etesevimab, Bamlanivimab, Casirivimab, Imdevima, Cilgavimab, Tixagevimab, Sotrovimab, and Regdanvimab might be dampened to varying degrees. Our analysis suggests the impact of Omicron on current therapeutic antibodies by the Omicron spike mutations may also apply to current COVID-19 vaccines.


Subject(s)
Antibodies, Monoclonal/analysis , Antibodies, Viral/pharmacology , Computer Simulation , Mutation/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Monoclonal/classification , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/pharmacology , Databases, Factual , Epitopes/immunology , Humans , Immunoglobulin G/pharmacology , Neutralization Tests , Spike Glycoprotein, Coronavirus/immunology
3.
MAbs ; 14(1): 2002236, 2022.
Article in English | MEDLINE | ID: covidwho-1585298

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an evolving global public health crisis in need of therapeutic options. Passive immunization of monoclonal antibodies (mAbs) represents a promising therapeutic strategy capable of conferring immediate protection from SARS-CoV-2 infection. Herein, we describe the discovery and characterization of neutralizing SARS-CoV-2 IgG and VHH antibodies from four large-scale phage libraries. Each library was constructed synthetically with shuffled complementarity-determining region loops from natural llama and human antibody repertoires. While most candidates targeted the receptor-binding domain of the S1 subunit of SARS-CoV-2 spike protein, we also identified a neutralizing IgG candidate that binds a unique epitope on the N-terminal domain. A select number of antibodies retained binding to SARS-CoV-2 variants Alpha, Beta, Gamma, Kappa and Delta. Overall, our data show that synthetic phage libraries can rapidly yield SARS-CoV-2 S1 antibodies with therapeutically desirable features, including high affinity, unique binding sites, and potent neutralizing activity in vitro, and a capacity to limit disease in vivo.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Cell Surface Display Techniques , Immunoglobulin G/immunology , Peptide Library , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , Antibody Specificity , Binding Sites, Antibody , COVID-19/metabolism , COVID-19/prevention & control , COVID-19/virology , Chlorocebus aethiops , Disease Models, Animal , Epitopes , Female , Host-Pathogen Interactions , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Immunoglobulin G/pharmacology , Mesocricetus , SARS-CoV-2/pathogenicity , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/pharmacology , Vero Cells
4.
Biochem Biophys Res Commun ; 578: 91-96, 2021 11 12.
Article in English | MEDLINE | ID: covidwho-1401240

ABSTRACT

The SARS-CoV-2 variant is rapidly spreading across the world and causes to resurge infections. We previously reported that CT-P59 presented its in vivo potency against Beta variants, despite its reduced activity in cell experiments. Yet, it remains uncertain to exert the antiviral effect of CT-P59 on Gamma, Delta and its associated variants (L452R). To tackle this question, we carried out cell tests and animal studies. CT-P59 showed neutralization against Gamma, Delta, Epsilon, and Kappa variants in cells, with reduced susceptibility. The mouse challenge experiments with Gamma and Delta variants substantiated in vivo potency of CT-P59 showing symptom remission and virus abrogation in the respiratory tract. Collectively, cell and animal studies showed that CT-P59 is effective against Gamma and Delta variants infection, hinting that CT-P59 has therapeutic potential for patients infected with Gamma, Delta and its associated variants.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/pharmacology , COVID-19 Drug Treatment , Disease Models, Animal , Immunoglobulin G/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacology , Body Weight/drug effects , COVID-19/virology , Female , Humans , Mice, Transgenic , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Survival Analysis
5.
JCI Insight ; 6(1)2021 01 11.
Article in English | MEDLINE | ID: covidwho-1066996

ABSTRACT

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coupled with a lack of therapeutics, has paralyzed the globe. Although significant effort has been invested in identifying antibodies that block infection, the ability of antibodies to target infected cells through Fc interactions may be vital to eliminate the virus. To explore the role of Fc activity in SARS-CoV-2 immunity, the functional potential of a cross-SARS-reactive antibody, CR3022, was assessed. CR3022 was able to broadly drive antibody effector functions, providing critical immune clearance at entry and upon egress. Using selectively engineered Fc variants, no protection was observed after administration of WT IgG1 in mice or hamsters. Conversely, the functionally enhanced Fc variant resulted in increased pathology in both the mouse and hamster models, causing weight loss in mice and enhanced viral replication and weight loss in the more susceptible hamster model, highlighting the pathological functions of Fc-enhancing mutations. These data point to the critical need for strategic Fc engineering for the treatment of SARS-CoV-2 infection.


Subject(s)
Antibodies, Neutralizing/pharmacology , COVID-19/immunology , Immunity, Innate/drug effects , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/therapeutic use , COVID-19/physiopathology , Cricetinae , Cross Reactions , Epitopes , Humans , Immunity, Innate/immunology , Immunoglobulin G/genetics , Immunoglobulin G/therapeutic use , Mesocricetus , Mice , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/immunology , Protein Engineering , Receptors, Fc/immunology , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , THP-1 Cells , Viral Load/drug effects , Weight Loss/drug effects , COVID-19 Drug Treatment
6.
Front Immunol ; 11: 614256, 2020.
Article in English | MEDLINE | ID: covidwho-1004681

ABSTRACT

The emergence of COVID-19 has led to a pandemic that has caused millions of cases of disease, variable morbidity and hundreds of thousands of deaths. Currently, only remdesivir and dexamethasone have demonstrated limited efficacy, only slightly reducing disease burden, thus novel approaches for clinical management of COVID-19 are needed. We identified a panel of human monoclonal antibody clones from a yeast display library with specificity to the SARS-CoV-2 spike protein receptor binding domain that neutralized the virus in vitro. Administration of the lead antibody clone to Syrian hamsters challenged with SARS-CoV-2 significantly reduced viral load and histopathology score in the lungs. Moreover, the antibody interrupted monocyte infiltration into the lungs, which may have contributed to the reduction of disease severity by limiting immunopathological exacerbation. The use of this antibody could provide an important therapy for treatment of COVID-19 patients.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Drug Treatment , COVID-19 , Immunoglobulin G , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/immunology , Antibodies, Viral/pharmacology , COVID-19/blood , COVID-19/immunology , Chlorocebus aethiops , Humans , Immunoglobulin G/immunology , Immunoglobulin G/pharmacology , Male , Mesocricetus , Severity of Illness Index , Vero Cells , Viral Load/drug effects , Viral Load/immunology
7.
Nat Commun ; 11(1): 2070, 2020 04 24.
Article in English | MEDLINE | ID: covidwho-116533

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, at the end of 2019, and there are currently no specific antiviral treatments or vaccines available. SARS-CoV-2 has been shown to use the same cell entry receptor as SARS-CoV, angiotensin-converting enzyme 2 (ACE2). In this report, we generate a recombinant protein by connecting the extracellular domain of human ACE2 to the Fc region of the human immunoglobulin IgG1. A fusion protein containing an ACE2 mutant with low catalytic activity is also used in this study. The fusion proteins are then characterized. Both fusion proteins have a high binding affinity for the receptor-binding domains of SARS-CoV and SARS-CoV-2 and exhibit desirable pharmacological properties in mice. Moreover, the fusion proteins neutralize virus pseudotyped with SARS-CoV or SARS-CoV-2 spike proteins in vitro. As these fusion proteins exhibit cross-reactivity against coronaviruses, they have potential applications in the diagnosis, prophylaxis, and treatment of SARS-CoV-2.


Subject(s)
Betacoronavirus/drug effects , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Neutralization Tests , Peptidyl-Dipeptidase A/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/metabolism , Binding, Competitive/drug effects , Cross Reactions , Drug Design , Humans , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Fc Fragments/pharmacology , Immunoglobulin G/metabolism , Immunoglobulin G/pharmacology , In Vitro Techniques , Inhibitory Concentration 50 , Membrane Fusion/drug effects , Mice , Mice, Inbred BALB C , Mutation , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/pharmacokinetics , Peptidyl-Dipeptidase A/pharmacology , Protein Domains/genetics , Protein Stability , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/chemistry , Receptors, Virus/genetics , Receptors, Virus/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacokinetics , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL